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Abstract. A model for interval mapping of quantita- 
tive trait loci (QTLs) in a n  F 2 population using genetic 
markers such as restriction fragment length polymor- 
phisms (RFLPs) is proposed. Based on this model the 
log-likelihood ratio statistic is divided into two useful 
statistics which .can be used to detect additive and 
dominance effects of QTLs, separately. The properties 
of the two statistics were investigated for the theoreti- 
cal construction of critical regions to test the gene 
action of QTLs. The model was applied to 1000 
simulated-sets of 200 F 2 individuals. 
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Introduction 

As the number of genetic markers available has in- 
creased with the advent of restriction fragment length 
polymorphisms (RFLPs), several methods to locate 
quantitative trait loci (QTLs) and to estimate the effects 
of QTLs using genetic markers have been developed. 
These methods are mainly based on the maximum 
likeli-hood technique including an analysis of variance 
(Soller and Brody 1976; Tanksley et al. 1982; Weller 
1986; Edwards et al. 1987; Lander and Botstein 1989; 
Paterson et at. 1991; Carbonell et al. 1992; Luo and 
Kearsey 1992). Of these, interval mapping, as proposed 
by Lander and Botstein (1989), provides the most 
accurate mapping of QTLs. In this method a region 
between flanking markers on a chromosome can be 
scanned to detect a QTL and the probable position of 
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that QTL is given as an interval of the chromosome 
giving a peak of LOD score. This method is particular- 
ly effective when a number of markers are available, 
and it has been applied both to backcross data (Pater- 
son et al. 1988) and F 2 data (Paterson et al. 1991). 
Lander and Botstein (1989) first suggested that the 
method could be applied t o  F 2 data as well as backcross 
data. However, the distributional properties of test 
statistics for F 2 data, on the basis of which the critical 
region is constructed, are more complicated than for 
backcross data. For example, log-likelihood ratio stat- 
istics given by modifying LO D  scores on a series of 
RFLP markers can not be asymptotically regarded as 
a typical ~2 process with two degrees of freedom (2 dr) 
but rather as an intractable stochastic process, for F 2 
data; in contrast those in backcross data are a typical 
)~2 process with 1 df asymptotically. Paterson et al. 
(1991) constructed the critical region for the LOD 
score in F z data assuming purely additive gene action. 
Interval mapping methods for F 2 data have been dis- 
cussed by Carbonell et al. (1992) and Luo and Kearsey 
(1992), but no theoretical basis for constructing critical 
regions for LOD scores for F 2 data has been provided. 

In this paper, we propose a new model for the analysis 
of QTLs for F 2 data. The parameterization of the genetic 
effects of QTLs is slightly different from that in the 
model adopted by Carbonell et al. (1992). We recon- 
struct the statistical procedure for detecting QTLs and 
estimating their effects. New statistics to detect QTLs 
and to estimate their gene action are also proposed. 

Model for analysis of QTLs in an F 2 progeny 

F 2 progenies are produced by an F 1 derived from a 
cross of two inbred lines, Pl and P2. Each F 2 progeny is 
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scored for both a quantitative trait and a number of 
genetic markers which are codominant, such as 
RFLPs. Generally the analysis of QTLs includes two 
steps. First, the presence of a QTL near a genetic 
marker is tested. Second, if the existence of a QTL is 
suggested, the position and effect of the QTL are 
estimated. We express the position of a marker or a 
QTL on a chromosome as the distance measured by 
genetic map units from the left and marker. A putative 
QTL (Q) is located at the position s between two 
flanking markers A and B. We shall use r~, r 2 and r a,2 to 
indicate recombination values over the intervals 
Q -  A, Q -  B, and A -  B, respectively. Alleles of loci 
Q, A and B from a parent P~ are denoted by Qa, Az and 
B~ and those from P2 by Qz, A~ and B> respectively. 
The genotype of the F~ is A ~ Q ~ B a / A z Q 2 B  2. F 2 indi- 
viduals can be divided into nine classes according 
to the marker genotypes, i.e., A~A~B~Bz ,  A t A ~ B ~ B 2 ,  

A~AaB2B2,  A~A2B~B~,  A~A2BaB2,  A~A2B~B2,  
A 2 A 2 B i B 1 ,  A z A a B t B  2 and A z A 2 B z B 2  ~. The 
A I A 2 B , B  2 class consists of individuals of genotypes 
A I B , / A z B  z and A , B z / A 2 B ~ .  These nine marker 
classes are referred to as classes 1-9, respectively. 

Suppose that a total of N progeny are sampled and 
that the number of individuals which fall in class i is 

9 N). Let the jth observation of class i be ni(Zi= l nl = 
denoted by yi~ (j = 1, 2 .. . .  n~ for i = 1, 2 . . . .  9). When Q 
is located at the position s and between two markers A 
and B Yo is described by the following model; 

yo=~+z~e+e~j (j=l,2 . . . .  n ~ f o r i = l , 2 , . . . 9 ) ,  
(1) 

where # is the mid-parental value of the contributions 
of Q added to the mean contributions of the other 
QTLs and 9 = (a, d, - a ) '  is a vector of effects of Q, 
where a, d and - a  denote the genotypic effects of the 
genotypes Q1Q1, Q1Q2 and Q2Q2, respectively, meas- 
ured from the mid-parental value, z~j = (z~j~, z~j 2, z~j3)' 
is a random vector indicating genotypes of Q of the 
jth individual of class i, which equals e 1 = (1,0,0)', 
e 2 = (0, 1, 0)' or e 3 = (0, 0, 1)' with probabilities p~, Pl2 
or Pi3 corresponding to the genotypes Q~Q~, Q1Q2 and 
Q2Q2, respectively, p~,, P~2 and Pi3, which are condi- 
tional probabilities given genotypes of the flanking 
markers (p ,  +Pi2 +P~3 = 1), can be expressed by a 
function of the recombination values, ra, r 2 and rx, 2. 
Table 1 shows frequencies of the genotypes of Q of the 
gametes generated by F,  individuals given the geno- 
types of flanking markers A and B. p~,  Pi2 and Pi3 are 
given for each i as in Table 2, where rt ,  z is the probabil- 
ity that recombination occurs simultaneously in both 
intervals, A - Q and Q - B. If Q is located exactly at A, 
then r~ = 0 and z~j = z2j = z 3 j  = e l ,  z 4 j  = Z s j  = z 6 j  = e2 ,  

and zva = zsi = z9j = e 3. e~; ~s a residual and is assumed 
to be a random normal variable with mean 0 and 

unknown variance cr 2, which includes environmental 
variance and residual genotypic variance contributed 
by the QTLs other than Q. 

The parameters are 0 = (la, a, d, a2) ' and s, the posi- 
tion of Q. The joint distribution of y~ and z~j can be 

Table 1. Conditional frequencies of QTL genotypes generated 
by F~ individuals given flanking markers 

Genotype of gamete Frequency of gamete given flankling 
markers a 

AIQ1B~ ql =(1 - r  1 - r  2 +r12)/(1 -rt,z) 
A1Q2B1 q2 = r12/(1 --  r l , 2 )  
A 1 Q 1 B 2  q3 = (r2 - -  r 1 2 ) / r l , 2  
A 1 Q2B2 q, = (r, --  r,2)/r ,,2 
A2Q1B1 q4 
A 2 Q z B 1  q3 
A2Q1B2 q2 
A2Q2B2 ql 

" rl: recombination value between A and (2 
r2: recombination value between B and Q 
rl 2: probability of recombination between A and Q and between 
B and Q on the same gamete 
rl. 2: recombination value between A and B 
It is noted that q,2 = ra + r 2 - -  2 r l 2  

Table 2. Frequencies ofQTL genotypes ofF I individuals given 
flanking marker genotypes 

Flanking marker genotype Frequency" 

A1A1BIBI Plz =q~ 
P12 =qlq2 z 
P13 = q2 

A1A1BtB2 P21 = qlq3 
P22 =qlq4 + q2q3 
P23 = q2q4 

A 1 A 1 B 2 B 2  P31 = q~ 

P32 = 2 q 3 q 4  

P33 = q2 
A1A2B1B1 P41 = qlq4 

P42 = qlq3  + q2q4 

P*3 = q2q3 
A1A2B1B2 P51 = (qlq2 + %q4)/2 

2 2 2 
P52 = (qi + q2 + qa + q~)/2 
P~3 = (qlq2 + %q*)/2 

AIA2B2B2 P61 = q2qa 
P62 = qlq3 + q2q4 
P63 = ql q* 

A~A2BtB1 P71 = q42 
P72 = 2qaq4 

P73 = q3 z 
A2A2B1B2 P81 = q2q4 

P82 = qaq4 + qzq3 

P83 = q~ q3 

A 2 A 2 B z B 2  P91 = q2 
P92 = 2% q2 
P93 = q~ 

For qt.q>q> and qr see Table i 



written as follows (Carbonell et al. 1992); 

f(Ylj, zij] O, s) = {Pilr (Yij -- # -- a)/a) }'" '  

x {Piz@((Yij - # - d)/a)} "' ' '  

x {Pi30((Yi j -  # + a)/a)}z"'/a, (2) 

where 0(x) = (2~)- 1/2 e x p ( -  x2/2) is the probability 
density function of the standard normal distribution. 
Given N samples, the likelihood function from (2) 
corresponding to the model (i) is 

9 ni 

L(O, s) = 1~ f ]  f(Yij ,  zijlO, s). 
i = l j = l  

A procedure of testing whether a QTL is present or not 
at the position s is based on L(O, s) and maximum 
likelihood estimates (MLEs) of 0 and s are given as 
values of 0 and s which maximize L(O, s). 

The model (1) is similar to that in Carbonell et al. 
(1992). Their model is here written as 

Yij = # + axij + d(1 - x~j) +eij  

x (j = 1, 2,. . .  n i for i = 1, 2 . . . .  9), 

where x~j is a coded variable taking values of 1, 0, and 
-- 1 corresponding to Q1Q1, QiQ2 and Q2Q2. If Q is 
located exactly at one of the two flanking markers A 
and B, the two models (1) and (4) are equivalent. 
However, if Q is located somewhere between A and B, 
the coefficient of d in (1) and (4) may make a difference 
between the two models. In model (4), the coefficient of 
d may be replaced by any function g(xu) satisfying 
g ( 1 ) = 9 ( - 1 ) = 0  and 9(0)=0; for example g(x)= 
1 - x 4. The reason why g(xlj ) = 1 - x~ should be pre- 
ferred in (4) is not clear. On the other hand, in model (1) 
no ambiguity occurs. It should be noted, however, that 
likelihood arguments are essentially the same whether 
based on model (1) or (4). 

Test for the presence of QTLs 

We first consider the null hypothesis H o : 0 =  
0o=(#o,0 ,0 ,a2)  ' and the alternative hypothesis 
H 1 : 0 = (#, a, d, a2) ' (a r 0 and/or d ~ 0). H o implies 
that there is no QTL contributing to the trait at or near 
the position s. Under Ho, the likelihood function is 

9 ni 

L(Oo, s)= I-I E f(Yij ,  Zljl O,s) 
i = 1 j = 1  

9 ni 

Zijl Zij2 Zij3 
= E ~ I  P l l  Pi2 P i 3 0 ( y l j - - # 0 / 0 " o ) / t T o  �9 

i=lj=l 
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The likelihood ratio A(s) given s to  test H o against H 1 is 

A(s) = max L(O, s)/max L(O, s), (6) 
Oe@2u@1 0oe@o 

where | and |  are parameter spaces corresponding 
to H 0 and H i, respectively. 

If A(s) is greater than a critical value corresponding 
to a given significance level, H o is rejected and a QTL 
at or near the position s is declared to be present. While 
Lander and Botstein (1989) and Paterson et al. (1991) 
treated LOD=logloA(s) ,  statistical properties of 
2(s) = 2log A(s) under H o should be considered here in 
order to determine a critical region for the test. It is to 

(3) be noted that zijis unknown unless Q is located exactly 
at A or B. For  any positions of Q between A and B, 2(s) 
can be calculated with the EM algorithm by regarding 
zq as missing observations (Dempster et al. 1977; Car- 
bonell et al. 1992). The statistical property of 2(s) ob- 
tained with the EM algorithm, however, is not clear. 
We restrict our consideration to the case where the 
position of Q is exactly that of a genetic marker A. Then 
the indicator variable zij (i = 1, 2 . . . .  9) can be known, 
and Z I j  -= Z2j  ~ Z3j = e l ,  z 4 j  = z 5 j  = z6 j  ~ e 2 and Z7j  

zsj = z9j = e 3 hold for A1A 1, A i A  2 and A2A 2, respect- 
ively. Consider m genetic markers on a chromosome, 

(4) let the position of the kth marker be Sg (k = 1, 2, . . .  m), 
and assume that 2(Sk) is obtained for each k. 2(Sk) 
follows asymptotically a )~2 distribution with 2 d f  
under Ho, where 2 d f  correspond to the difference in 
the number of parameters involved in H o and HI, 
respectively. From well-known results concerning lin- 
ear regression, 2(Sk) can be expressed as 

2(sk) = N log(82/02), 

where a g = 9 ni - -  2 ^ Y~= 1 Zj= 1 (Yq - Y..) /N  and by putting 
Uij ~ Uij I - -  Zij 3 

= ( y , j  - y . . )  
L i = l j = l  

i = 1 1 = 1  i j =  

~ (zu2 - Z~.E)')/N. (7) 
i = 1 1 = 1  

If we put 

9 ni / 

P(Sk) = X / ~  Z E (Uij-  ~..)(Y~j- -Y-..) 
i = l j = l  

i = l j = l  i = l j = l  
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and 

9. ,  / 
rl(Sk) = X / ~  Z ~, (Zij2 -- Z..z)(Yu -- 7..) 

~=tj=l 

~ ~, ( z 0 2 -  z-.~ ,2 ~ ~ (Yu--y.__)2, (9) 
i = l j = l  i = l j = l  

then we can express 2(Sk) as 

�9 ~(Sk) = -- N log [1 -- P(Sk)2/N -- ~I(Sk)2/N]. (10) 

It is noted that the value of z~j = (zljt, zo2,zoa )' 
depends on the marker genotypes at the position 
s k. For  m positions of genetic markers on a chromo- 
some, a series of correlated tests are performed for H o. 
The critical value with significance level e satisfies 
Prob I-max2(sk) > c] = cc If 2(sk) exceeds c for some k, 
H o is rejected and the presence of a QTL near the kth 
marker is declared. 

Lander and Botstein (1989) showed that the log- 
likelihood ratio statistics 2(Sk) obtained in their model 
for the analysis of backcross data is a Z 2 process with 
1 d f  under H o and constructed a critical region for the 
LOD score by applying an extreme stochastic process 
theory to 2(Sk). They also suggested in Appendix 5 that 
a similar argument can be applied to F 2 data, i.e., 2(Sk) 
for F 2 is Z 2 process with 2 d f  under Ho, from which the 
critical region can be constructed Paterson et al. (1988), 
however, modify the statement and point out that the 
appropriate critical value depends on the correspond- 
ing mathematical theory of large deviations of a gener- 
alized ~2 process (Paterson et al. 1991). The problem of 
obtaining a critical value for 2(sk) for F 2 data remains 
unsolved. New statistics in plane of 2(Sk) will be dis- 
cussed here to determine the critical region for testing 
H o . 

If N is sufficiently large, then it follows from (10) 
that 

2(sk)=p(sO~+~(sO ~. (11) 

It is shown that, under H o, P(Sk) and rl(Sk) are approxi- 
mately independent normal random variables with 
mean 0 and variance 1 (Appendix 1), Coy [p(sk), p(s l ) l  = 
1 - 2rk, z and Cov [t/(Sk), q(sl)l = (1 -- 2rk,Z) 2 (Appendix 
2), where rk, ~ is the recombination value between the 
kth marker and the/th marker. Since Cov [p(sk), p(s~)] 
Cov [q(Sk), q(Sz)], 2(Sk) (k = 1, 2 , . . .  m) is not a typical )~2 
process but a generalized Z 2 process with 2 df .  

From the above arguments it can be easily shown 
that p(sk) and rt(Sk) (k = 1, 2 . . . .  m) are independent sta- 
tionary Gaussian processes under H o. The joint dis- 
tribution of p(s,) (k = 1, 2 . . . .  m) is m-variate normal 
with a mean vector 0 = (0,0,. . .0) '  and a variance- 
covariance matrix 2; 1 = (a~) (i, j = 1, 2 . . . .  m), where di- 

agonal dements, air, are 1 and off-diagonal ones, au(i C j), 
are 1 -2ri,a.rl(Sk) (k = 1,2 . . . .  m) is also m-variate nor- 
mal with a mean vector 0 and a variance-covariance 
matrix 2;2, whose diagonal elements are 1 and off- 
diagonal ones are (1 - 2ria)2. 

Instead of 2(Sk) , we use P(Sk) (k = 1, 2 . . . .  m) as a 
statistic to test H o. This implies that as an alternative 
hypothesis we adopt H' 1: a r 0 and d = 0 in place of H a. 
Paterson et al. (1991) use a similar approach but fail to 
describe the critical region. The critical values of the 
test, c, corresponding to a significance level a, are given 
by the joint distribution of P(Sk) (k = 1, 2 . . . .  m), where 
Pr [max [p(sO[ > c] = ~. If Ip(sk) l takes a value over c 
for some k, H 0 is rejected and the additive effect of a 
QTL is detected; thus, the presence of a QTL at or near 
the kth marker is suggested. Then rl(Sg) (k = 1, 2,. . .  m) 
are used as statistics to test H',), i.e., whether a domi- 
nance effect exists or not. It is easily shown that the 
joint distribution of r/(Sk) (k = 1, 2 . . . .  m) is the same that 
under Ho, i.e., rl(Sk) (k = 1, 2 . . . .  m) are m-variate nor- 
mally distributed with a mean 0 and a variance-cova- 
riance matrix s even under H'~. The critical region for 
rl(Sk) is obtained as in the case of p(Sk). 2(Sk) can be 
initially used to pick up the positions where QTLs are 
likely to be present. Then, we can detect the additive 
and dominance effects of the QTLs with p(Sg) and rl(Sg), 
respectively. 

The algorithm for obtaining MLEs of 0 and s 

If the presence ofa  QTL at the position of some genetic 
marker is suggested in testing the hypothesis, then 
estimators of genetic effects and position of the QTL 
are obtained b y  the maximum likelihood method. Al- 
though the procedure has been discussed by Carbonell 
et al. (1992), it is described again for model (1) (see also 
Luo and Kearsey 1992). 

Given the location, s, from (2) and (3) the log- 
likelihood log L(O, s) is 

9 ni 

l o g L ( O , s ) =  ~ ~ logf(yi~,zi~lO, s ) 
i = l j = l  

9 ni 

= ~ ~ (zij 1 log Pil + z,j2 log Piz + Zua log P,a) 
i = l j = l  

9 ni 

-- N/2 log(2rco "2) -- ~ ~ [ Z l j t ( Y i j  - -  # - -  a) 2 
i = l j = l  

+ zU2(yij -- # -- d) 2 + zij3(Yij - # - a)Z]/(2a2). (12) 

In order for 0 to maximize L(O, s), given s, logL(0, s) 
is differentiated with respect to the components #, a, d 



a n d  0 "2 and the following equations are solved. 

Olog L(O, s) 

8~ 

81og L( O, s) 

8a 

9 ni 

Z Z [zUl(Yij--#--a) 
i=i/=l 

+ z~i2(y~i - ~ - d) 

+ z~i~(y~i - ~ + a)]/~ 2 = 0 

81og L(O, s) 

8d 

8log L(  O, s) 
c~0" 2 

(13) 

9 ni 

i = l j = l  

- -  Zij3 (Yl j  --  # + a)]/0"2 ---- 0 (14) 

9 ni 

~ zu2(y  u - ~ - d)/0" 2 = 0 (15) 
i : l j = l  

9 ni 

-- N/(20"2) + Z Z [Zijl (Yij --  # -- a) 2 
i = l j = l  

-}- Z i j 2 ( Y i l  -- ~t -- d) 2 

+ Ztj3(yi i -- # d" a)2]/(20" 4) = 0 (16) 

/~, a, d and a 2 satisfying (13), (14), (15), and (16) simulta- 
neously, and denoted by/~, & d ^2 �9 and a ,  respectively, are 

f t  = u i j y l j  
j = l  

i = l j = l  

9 n/ 

a = Z Z u J d ( N -  " ) -  
i = l j = l  

and 

9 ni 

: E a) 2 + z,2(y,j- 3) 2 
i=lj=l 

+ z~j3(y~j - ~ + a)2]/N,  

where 

9 ni 

u~j = z~j~ - zii 3, A = ~ ~ % 
i = l j = l  

and 

9 ni 

i = 1 j = 1  

Again it should be noted that z u = ( z u p z u 2 , z u 3 ) '  is 
unknown, unless the position of interest, s, coincides 
with that of a genetic marker. Then the EM algorithm is 
used to predict z u in the above equations for obtaining 
fi, 8, d and ~2. The predictor zu = (5u~, ~ij2, Zij3) is ob- 
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tained as follows (Carbonell et al. 1992; Luo and Kear- 
sey 1992); 

~jk = E(z~jk l Y~fl = P~k 4) ((Y~j -- # --  6k) /a)  / 

3 

p~k4~((yu -- # --  6k)/a ) (k = 1, 2, 3), 
k = l  

where 6 k = a, d, and - a for k = 1, 2, and 3, respect~ely. 
This cycle which consists o! predicting zii given/~, & d and 
d2 (E step) and obtaining #, & dand t~ 2 given g~j (M step) 
is iterated until the estimates converge. The limit values 

^ ^ ^ -,2 in the iteration are denoted by O(s)= (t~, a, d, ~ ). The 
test statistics 2(s), p(s) 2, and ~(s) 2 are calculated for 
positions s at a regular distance, say 2 cM, and plotted 
against the chromosome map. If the presence of a QTL 
is declared in testing Ho, the position at which the 
graph of 2(s) has its maximum is the MLE of the loca- 
tion of a QTL, i and 0"(~) is regarded as the MEL of 0. 

Critical region and numerical examples 

Let us consider a simple case in which three genetic 
markers A, B and C are available on a chromosome 
and the data set is composed of N observations for a 
quantitative trait. Let allele A1, B 1 and C l be from one 
parent and A2, B 2 and C z from the other parent. Sup- 
pose that the interval A -  B and B -  C are both 
25.5 cM, which corresponds to a recombination value 
of 0.2 applying the Haldane mapping function. In our 
simulations we set /~=0, variance of e~j,~a= 1.0, 
and the number of observations N = 200. The effect of 
the QTL, 9 = (a, d, - a)', is given according to the con- 
ditions we want to simulate. Yu is determined by the 
genotype of the QTL, the genetic effect of the QTL, 9, 
and the residual error %j, which is generated'as a normal 
random number. First, letting 9 = (0, 0, 0)' we can con- 
truct a critical region for testing the null hypothesis 
that there is no QTL at or near the genetic markers. 
While Lander and Botstein (1989) used extended nu- 
merical simulation to determine the critical region of 
the 5% significance level for LOD scores for the differ- 
ent density of markers, it is possible to construct a 
critical region of any significance level for. test statistics 
proposed here by multiple integration of a multivariate 
normal density function when the distances between 
genetic markers are given. We illustrate this as follows. 

The test statistic P(Sk) (k = 1, 2, 3), where s k indicates 
the position of the kth marker and k = 1,2, and 
3, correspond to A, B, C, respectively, follows a three- 
variate normal distribution. The critical region corre- 
sponding to a significance level e is constructed 
by utilizing a three-variate normal density function. 
The critical value c with a significance level e satisfies 
Prob [max lp (Se )  I > c] = 1 - Prob (Ip(sa) [ _< c, Ip(s2) I < 
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c, Ip(s3) I ~ c). It  is shown that 

Prob []p(sl) [ <c,  [p(s2) [ < c, [p(s3)] _< c] 

f f f: = (2re) - 3 / 2  t Z 1 ] -- 1 / 2  

- c  - c  c 

x exp(--  1/2x'Z[-lx)dx, (17) 

where x = ( x l ,  x2,x3)' ,  dx  means d x l d x 2 d x  3 and the 
elements o- u of Z1 are covariances between p(si) and 
p(sj) (i,j = 1, 2, 3). I t  is possible to obtain c numerically 
from (17). Simulation was carried out to evaluate the 
critical values obtained from (17) for a sample size of 
N = 200. The number  of times for max l P(Sk) l taking the 
value over c of 1000 simulations are eight for a signifi- 
cance level e = 0.01 and 52 for c~ = 0.05, respectively. In 
this situation the values of c obtained numerically with 
(17) are 2.92 for e = 0.01 and 2.35 for c~ = 0.05, respect- 
ively. The critical values of the test statistics proposed 
here are adequate for given critical regions, even if the 
sample is of modest  size, say N -- 200. 

Finally, the graphs of the statistics, 2(s) = 2log A(s), 
p(s) 2, and tl(s) z are illustrated for a sample size of 200 
progeny when a Q T L  is present. A Q T L  is located at 
12.55 cM from A and B. Here two cases were simulated, 
i.e., additive effect with no dominance for the Q T L  is 
assumed for case 1, by letting g = (0.4, 0.0, - 0.4)', and 
complete dominance for case 2, by letting g = (0.4, 0.4, 
- 0.4)'. The results are shown in Figs. 1 and 2, where 
the two horizontal lines indicate critical values with 
a = 0 . 0 1  and 0.05 for p(s) 2, i.e., (2.92)1= 8.35 and 
(2.35)2= 5.52, respectively.' The corresponding L O D  
scores are 1.81 and 1.19, which are much smaller than 
the critical values of L O D  score suggested by Lander 
and Botstein (1989), i.e., 2.4 (based on a ~2 process with 
1 d f ) ,  due to a shorter chromosome length (51cM 
vs 100cM) and the small number  of markers (three 
markers) mapped on the chromosome. It  is shown that 
the presence of a Q T L  is declared by p(s) 2 exceeding the 
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Fig 1. The behavior of statistics 2(s), p(s) 2, and q(s) 2 along a 
chromosome map scanned from marker A to marker C for case 1 
(d = 0.4, h = 0.0). The horizontal lines in the figure indicate criti- 
cal values for significance levels of 0.01 and 0.05, respectively 
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Fig 2. The behavior of statistics 2(s), p(s) 2, and ~(S)  2 along a 
chromosome map scanned from marker A to marker C for case 2 
(d = h = 0.4). Two horizontal lines in the figure indicate critical 
values for significance levels of 0,01 and 0.05, respectively 

critical values at A and B for each case and t/(s) 2 
sensitive to the dominance effect. As shown in the 
figures the statistics tend to take higher values between 
the markers than at the positions of the marker. This 
tendency is caused by the CM algorithm. Therefore the 
statistics obtained at the positions of the markers 
should be used for testing the presence of QTLs. Even if 
the critical value is exceeded somewhere between the 
markers, no Q T L  may be declared when the test statis- 
tics show low values at the positions of the flanking 
markers; for example, no Q T L  may be suggested in the 
interval between B and C in Figs. 1 and 2. MLEs of 0 
and the positions of the QTL are given as those values 
maximizing 2(s) as described above. In simulations a 
chromosome was scanned from A to C at intervals of 
2.55cM which is 1/10 of the interval between the 
markers. MLEs obtained in these examples are 0 =  
(-0.O73,0.359,0.108,0.878) and g =  12.75 for case 1 
and 0=(0.073,0.350,0.485,0.892) and ~=  12.75 for 
case 2, while 0=(0.0,0.4,0.0,1.0), s=12 .75  and 
0 = (0.0, 0.4, 0.4, 1.0), s = 12.75 are given for case 1 and 
case 2, are respectively. 

Discussion and conclusion 

The interval mapping method for the analysis of QTLs 
by Lander and Botstein (1989) has been discussed not 
only for the backcross data but also for F 2 data (Car- 
bonell et al. 1992; Luo and Kearsey 1992). Though the 
procedure developed to detect QTLs for backcross 
data has been applied to F 2 data, no theoretical back- 
ground exists for constructing the critical region of the 
L O D  score. Unlike backcross data, the distribution of 
the log-likelihood ratio statistic testing for the presence 
ofa  QTL is unknown for F 2 data; thus it is imposible to 
construct a critical region theoretically. However in a 
model described here the log-likelihood ratio statistic 



can  be  d iv ided  in to  two  useful  statist ics,  p(s) 2 and/~(S) 2,  

w h o s e  a s y m p t o t i c  s ta t i s t ica l  p rope r t i e s  u n d e r  the  nul l  
hypo the s i s  a re  clear ,  so tha t  c o n s t r u c t i o n  of  the  cr i t ical  
r eg ion  is poss ib le  theore t i ca l ly ,  especia l ly  for  a s imple  
case where  on ly  a few m a r k e r s  are  u n d e r  cons ide ra t ion .  
F o r  the  case  in wh ich  the  n u m b e r  of  m a r k e r s  ava i l ab le  
is large,  i t  t akes  t ime  a n d  cost  to  ca lcu la te  a mu l t i p l e  
i n t e g r a t i o n  such  as (17) n u m e r i c a l l y  in o r d e r  to  o b t a i n  
a cr i t ical  va lue ,  b u t  a cr i t ical  r eg ion  m a y  be  c o n s t r u c t e d  

us ing  s imula t ions .  M o r e o v e r  p(s )  and  t/(s) a re  s h o w n  to  
be s tat is t ics  c o r r e s p o n d i n g  to add i t ive  a n d  d o m i n a n c e  
effects of  Q T L s ,  respect ively .  By us ing  these  statistics,  
h y p o t h e s e s  a b o u t  the  gene  ac t i on  of  Q T L s ,  such as no  
d o m i n a n c e  a n d  c o m p l e t e  d o m i n a n c e ,  a re  easi ly tested.  
T h e  p o w e r  of  these  s tat is t ics  to  de tec t  Q T L s  u n d e r  
va r i ous  cond i t ions ,  for example ,  s ample  size a n d  her i -  
tabi l i ty ,  is u n d e r  i nves t i ga t i on  a n d  the  resul ts  will  be  
d iscussed  e lsewhere .  

Appendix 1 

We show that, for each k, p(sk) and tl(Sk) are independent normal 
random variates with mean 0 and variance 1 asymptotically, i.e., 
when N becomes infinite, H 0. Letting a marker located at s k be 
denoted by A, zij = (zijl ,  zijz,  z~j3) is el, e 2, or e 3 corresponding to 
the genotypes A~A1,  A~A2  and A z A  2 with probabilities 1/4, 1/2, 
and 1/4, respectively. Thus, by means of the law of large numbers, 
u.. = z..~ - z.. 3 and ~ converge to 0 and 1/2, respectively, with 
probability 1. For a sufficiently large N, u~j - ~.. takes values of 
1, 0, and - 1 with frequencies N/4 ,  N /2 ,  and N/4 ,  respectively. 
Therefore we can write the numerator of the second term of the 
right-hand side of (8) as 

Z (u,j - ~ . ) ( y , j  - y_..) = ~ '  (Yij - Y._) - ~ "  (Ylj - Y._), 
i = l j = 1  

where ~ '  and ~ "  indicate the summation over the set of (i, j) in 
which u~j - ~ takes I and - 1, respectively. Under Ho, Yij follows 
an independent and identical normal distribution with mean a o 
and variance a~ for all i and j, so y i j -  y.~ are considered to be 
sampled from a normal distribution with mean 0 and variance ao 2 
because by nieans of the law of large numbers y.. converges 

9 n l  to go with a probability of 1. Therefore, Z~= 1 ~]j=l ( u u -  W...) 
(Y2~y - 7..)/,,/N is normally distributed with mean 0 and variance 
~0/2. It is also shown by means of the law of large numbers that 

9 n i  Zi=l  Z j : l  (uij-- ~..)2 and ~29=1 "' - -  2 Y'4= 1 (Yiy - Y..) converge to 1/2 
and a~, so that it is proven that p(Sk) defined by (8) is a normal 
random variable with mean 0 and variance 1. By a similar argu- 
ment it can be shown that tl(Sk) is normally distributed with mean 
0 and variance 1. Moreover, eovariance of p(sk) and tl(sk) is 0, 
since coefficients of Yij -- ~ in (8) and (9), uii - u.. and zij 2 - -  ~..2,  

respectively, are orthogonal. That is, for a sufficiently large N, 

u~; - ~ = 1, 0, and - 1 and zij 2 - z.--]22 = - 1/2, 1/2, and - 1/2 
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corresponding to the genotype A 1A 1, A ~A 2 and A e A  2 if marker 
A is of interest. 

Appendix 2 

Coy [P(Sk), P(h)] is treated first. The two markers located at s k 
and s~ are denoted by A and B, respectively. For each of N 
progeny, the indicator variable z = (z 1, z2, z3) is given at sk and s z 
corresponding to the marker genotypes (subscripts i and j are 
omitted for simplicity). Let u = z 1 - z 3 at s k be denoted by u k and 
that at s z be u~, respectively. The frequencies of the genotype 
A 1 A  1, A 1 A  2, and A z A  2 at A are 1/4, 1/2, and 1/4, respectively, 
and the conditional frequencies of the genotypes B 1 B~, B1 B 2 and 
B2B22at B, given the genotypes at A, are (1 - rk z) 2, 2rk Z(1 -- rk ~), 
and r k l for A 1 A  1, rk  z (  1 - -  rk l), ( 1  - -  r k / ) 2  q _  r 2 l ,  and r k ~(1'- rk t) for 

' 2 ' ' ' 2 ' ' : 
A 1 A2,  and rka, 2rka (1 -- rk,z), and (1 -- rk,1) for AzA2,  respectavely, 
where rk,t is a recombination value between A and B. By taking 
account o f u  k = 1,0, and - 1 for A~ A 1 , A 1 A z ,  and A2A2,  respect- 
ively, and u 1 = 1, 0, and - 1  for B 1 B1, B 1 B 2 and B 2 B z, respect- 
ively, it is clear that Cov(uk, u 1) = 1 - 2rk,l. Therefore from (8) it is 
easily shown that Cov[p(Sk),P(sl)  ] = 1 -  2rk,l holds approxi- 
mately by using arguments similar to those of Appendix 1. By the 
same consideration of z2, COV[t/(Sk), t/(Sl)] = (1 - 2rk.l) 2 can be 
proved. 
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